
©2019 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title Android (AOSP) Download Provider SQL Injection in Query Sort
Parameter (CVE-2019-2196)

Severity High

Discovered by Daniel Kachakil, Senior Security Consultant

Advisory Date January 17, 2020

Affected Products
Android Open Source Project (AOSP)
Android versions: 5.1, 6.0.1, 7.0, 7.1.1, 7.1.2, 8.0, 8.1, 9, 10

Impact
A malicious application with the INTERNET permission granted could retrieve all entries
from the Download Provider internal database, bypassing all currently implemented access
control mechanisms, by exploiting an SQL injection in the sort parameter (ORDER BY
clause) and appending a LIMIT clause, which allows expressions, including subqueries.

The information retrieved from this provider may include potentially sensitive information
such as file names, descriptions, titles, paths, URLs (which may contain sensitive
parameters in the query strings), cookies, custom HTTP headers, etc., for applications such
as Gmail, Google Chrome, the Google Play Store, etc.

Background
The Download Provider is used to handle OTA updates and the basic download needs of
relevant applications such as Gmail, Google Chrome, and the Google Play Store, amongst
many others.

By design, all of this information should be restricted to the application that requested the
download or applications with explicit permission to access all downloads. This is why
custom permissions and different URI paths exist for this provider.

Technical Details
Access to the Download Content Provider requires different permissions, such as
INTERNET or ACCESS_ALL_DOWNLOADS, depending on the requested URI, as shown in
the AndroidManifest.xml1 file:

1 https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/master/AndroidManifest.xml

https://ioactive.com

©2019 IOActive, Inc. All rights reserved. [2]

<provider android:name=".DownloadProvider"
 android:authorities="downloads" android:exported="true">
 <!-- Anyone can access /my_downloads, the provider internally restricts
 access by UID for these URIs -->
 <path-permission android:pathPrefix="/my_downloads"
 android:permission="android.permission.INTERNET"/>
 <!-- to access /all_downloads, ACCESS_ALL_DOWNLOADS permission is
 required -->
 <path-permission android:pathPrefix="/all_downloads"
 android:permission="android.permission.ACCESS_ALL_DOWNLOADS"/>
 <!-- Temporary, for backwards compatibility -->
 <path-permission android:pathPrefix="/download"
 android:permission="android.permission.INTERNET"/>

 <!-- Apps with access to /all_downloads/... can grant permissions,
 allowing them to share downloaded files with other viewers -->
 <grant-uri-permission android:pathPrefix="/all_downloads/"/>
 <!-- Apps with access to /my_downloads/... can grant permissions,
 allowing them to share downloaded files with other viewers -->
 <grant-uri-permission android:pathPrefix="/my_downloads/"/>
</provider>

Note that this attack vector is different from those affecting the selection clauses. To the
best of our knowledge, it affects all versions of Android. This vulnerability allows a malicious
application to efficiently retrieve all existing data from the internal downloads.db
database.

Proof of Concept
In order to exploit the issue, a malicious application granted the INTERNET permission can
request a legitimate download in order to differentiate between true and false
conditions, based on the number of returned rows from the legitimate query to the
content://downloads/my_downloads URI, with a sort order like the following:

column LIMIT CASE WHEN (condition) THEN 1 ELSE 0 END

For instance:
_id LIMIT CASE WHEN ((SELECT COUNT(*) FROM downloads WHERE _id=123 AND
title LIKE 'a%') > 0) THEN 1 ELSE 0 END

When the condition is evaluated to true, the executed query will return information, while it
will not return any rows when it is evaluated to false. This is enough to perform a classic
blind SQL injection attack and retrieve all of the information from the database.

Note that, in addition to the default downloads table, the injection also allows access to
the request_headers table and all private columns (such as UID, ETag, or

©2019 IOActive, Inc. All rights reserved. [3]

CookieData), which should be restricted by the projection explicit limitations, as
mentioned in the internal documentation2:

Reducing the list of visible columns

Security in the download provider is primarily enforced with two separate mechanisms:

• Column restrictions, such that only a small number of the download provider's
columns can be read or queried by applications.

• UID restrictions, such that only the application that initiated a download can
access information about that download.

The first mechanism is expected to be fairly robust (the implementation is quite simple,
based on projection maps, which are highly structured), but the second one relies on
arbitrary strings (URIs and SQL fragments) passed by applications and is therefore at a
higher risk of being compromised. Therefore, sensitive information stored in unrestricted
columns (for which the first mechanism doesn't apply) is at a greater risk than other
information.

A PoC app accompanies this advisory3 which implements a faster and more efficient
extraction, retrieving one byte per query. This is achieved by inserting 256 arbitrary
downloads (in the first execution only), and then just reading the number of returned rows,
rather than retrieving a single bit per query.

This PoC app will retrieve several columns from all existing downloads in the table, such as
URI, title, or description, including some of the restricted ones, such as ETag or
CookieData, and all custom headers (if any) as well.

If the output is empty, make sure that the provider contains some data, by downloading any
file (i.e. a PDF) from Google Chrome or any attachment from Gmail, for instance.

Suggested Fixes
Make sure that the sort parameter of the query method is properly validated before
executing the underlying request to the database.

Since the ORDER BY clause in SQLite does not allow expressions, the risk can be fully
mitigated by ensuring that the sort parameter does not contain any malicious payload
injecting a LIMIT clause with a potentially malicious subquery.

Stricter validations may also be performed, such as requiring the parameter to only contain
a comma-separated list of existing columns and the string literals “asc” or “desc”.

2 https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/master/docs/index.html
3 https://github.com/IOActive/AOSP-DownloadProviderDbDumperSQLiLimit

©2019 IOActive, Inc. All rights reserved. [4]

For instance, a simple fix that should mitigate the issue would be adding the following
condition to the DownloadProvider.java file4:

@Override
public query(final Uri uri, String[] projection,
 final String selection, final String[] selectionArgs,
 final String sort) {
 ...
 if (shouldRestrictVisibility()) {
 if (sort != null &&
 sort.toLowerCase(Locale.ENGLISH).contains("limit"))
 throw new IllegalArgumentException("invalid sort");
 ...

Mitigation
The vulnerability has been fixed in the official repository. Specifically, in the following
commits, also affecting the Android’s Base Framework and Media Provider:

https://android.googlesource.com/platform/frameworks/base/+/07d6f1fe094b6dbde854fb82
ada06e85d7a97ecd

https://android.googlesource.com/platform/frameworks/base/+/36a5c576f0d379b0be3716fe
5b8b9ae8bb3952f5

https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/ef2560
0f187f5372ad89645e6e6e7b4204bf0676

https://android.googlesource.com/platform/packages/providers/MediaProvider/+/4a8274297
65fa167571ec21611ee057d43c8e336

Google had released security patches for this vulnerability in November 2019. IOActive
recommends applying the latest security patches from your vendor. If for any reason it is
not possible to apply such updates, make sure that your Android device only contains
trusted applications before attempting to download any files, particularly if they contain
confidential information.

Timeline
• 2019-06-05 IOActive discovers vulnerability

• 2019-06-13 IOActive reports vulnerability to Google

• 2019-11-05 Google publishes the fix for the vulnerability

• 2020-01-17 IOActive advisory published

4
https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/refs/heads/master/src/com/andro
id/providers/downloads/DownloadProvider.java

https://ioactive.com

