

©2020 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title pppd vulnerable to buffer overflow due to a flaw in EAP packet
processing (CVE-2020-8597)

Severity High

Discovered by Ilja Van Sprundel, Director of Penetration Testing

Advisory Date March 4, 2020

Affected Products
Cisco, Debian GNU/Linux, Fedora Project, NetBSD, OpenWRT, Red Hat, SUSE Linux,
Synology, TP-LINK, Ubuntu

Impact
By sending an unsolicited EAP packet to a vulnerable ppp client or server, an
unauthenticated remote attacker could cause memory corruption in the pppd process,
which may allow for arbitrary code execution.

Background
pppd (Point to Point Protocol Daemon) versions 2.4.2 through 2.4.8 are vulnerable to buffer
overflow due to a flaw in Extensible Authentication Protocol (EAP) packet processing in
eap_request and eap_response subroutines.

Technical Details
PPP is the protocol used for establishing internet links over dial-up modems, DSL
connections, and many other types of point-to-point links including Virtual Private Networks
(VPN) such as Point to Point Tunneling Protocol (PPTP). The pppd software can also
authenticate a network connected peer and/or supply authentication information to the peer
using multiple authentication protocols including EAP.

Due to a flaw in the Extensible Authentication Protocol (EAP) packet processing in the
Point-to-Point Protocol Daemon (pppd), an unauthenticated remote attacker may be able to
cause a stack buffer overflow, which may allow arbitrary code execution on the target
system. This vulnerability is due to an error in validating the size of the input before copying
the supplied data into memory. As the validation of the data size is incorrect, arbitrary data
can be copied into memory and cause memory corruption possibly leading to execution of
unwanted code.

The vulnerability is in the logic of the eap parsing code, specifically in the eap_request()
and eap_response() functions in eap.c that are called by a network input handler. These
functions take a pointer and length as input using the the first byte as a type. If the type is
EAPT_MD5CHAP(4), it looks at an embedded 1-byte length field. The logic in this code is

https://ioactive.com

©2020 IOActive, Inc. All rights reserved. [2]

intended to make sure that embedded length is smaller than the whole packet length. After
this verification, it tries to copy provided data (hostname) that is located after the embedded
length field into a local stack buffer. This bounds check is incorrect and allows for memory
copy to happen with an arbitrary length of data.

An additional logic flaw causes the eap_input() function to not check if EAP has been
negotiated during the Line Control Protocol (LCP) phase. This allows an unauthenticated
attacker to send an EAP packet even if ppp refused the authentication negotiation due to
lack of support for EAP or due to mismatch of an agreed pre-shared passphrase in the LCP
phase. The vulnerable pppd code in eap_input will still process the EAP packet and trigger
the stack buffer overflow. This unverified data with an unknown size can be used to corrupt
memory of the target system. The pppd often runs with high privileges (system or root) and
works in conjunction with kernel drivers. This makes it possible for an attacker to potentially
execute arbitrary code with system or root level privileges.

The pppd software is also adopted into lwIP (lightweight IP) project to provide pppd
capabilities for small devices. The default installer and packages of lwIP are not vulnerable
to this buffer overflow. However, if you have used the lwIP source code and configured
specifically to enable EAP at compile time, your software is likely vulnerable to the buffer
overflow. The recommended update is available from Git repoistory
http://git.savannah.nongnu.org/cgit/lwip.git.

This type of weakness is commonly associated in Common Weakness Enumeration (CWE)
with CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow').

Suggested Fixes
Update your software with the latest available patches provided by your software vendor. It
is incorrect to assume that pppd is not vulnerable if EAP is not enabled or EAP has not
been negotiated by a remote peer using a secret or passphrase. This is due to the fact that
an authenticated attacker may still be able to send unsolicited EAP packet to trigger the
buffer overflow.

If your software is packaged and created from the ppp source code, please obtain the latest
software from github pppd repository.
https://github.com/paulusmack/ppp

Patch referenced:
https://github.com/paulusmack/ppp/commit/8d7970b8f3db727fe798b65f3377fe6787575426

In case of lwIP package that is compiled from source with EAP enabled at compile time,
obtain the latest software from github
http://git.savannah.nongnu.org/cgit/lwip.git

Patch referenced:
http://git.savannah.nongnu.org/cgit/lwip.git/commit/?id=2ee3cbe69c6d2805e64e7cac2a1c1706e49ff
d86

©2020 IOActive, Inc. All rights reserved. [3]

Note: the latest software also includes ignoring out-of-order or unsolicited EAP packets from being
processed as an additional precautionary measure. It is recommended that you use the latest
available software from the appropriate Git repository that includes this fix.

There is no viable work around except to patch the software with updated software made available
by the software vendors.

References
• https://nvd.nist.gov/vuln/detail/CVE-2020-8597
• https://vulners.com/cve/CVE-2020-8597
• https://github.com/paulusmack/ppp/commit/8d45443bb5c9372b4c6a362ba2f443d41c5636af
• http://git.savannah.nongnu.org/cgit/lwip.git/commit/?id=2ee3cbe69c6d2805e64e7cac2a1c1706e4

9ffd86
• http://git.savannah.nongnu.org/cgit/lwip.git/commit/?id=d281d3e9592a3ca2ad0c3b7840f8036facc

02f7b

Special Thanks
Special thanks to Vijay S. Sarvepalli from cert/cc and Paul Mackerras (pppd author) for
the work and contributions in helping resolve the issue.

Timeline
• 12/16/2019 - vulnerability discovery
• 12/17/2019 - contacted cert/cc
• 12/18/2019 - cert responds, suggest making POC and reaching out to to ppp author directly
• 12/19/2019 - created poc, reached out to pppd author, responded to cert/cc
• 12/20/2019 - response from cert/cc says a lot of staff is out for holidays, could cause some

delayed responses
• 01/05/2020 - no response from ppp author yet, reaching out again. this time also on a 2nd email

address
• 01/06/2020 - response from pppd author, acknowledges the issue. Informed cert/cc we made

contact with pppd author
• 01/15/2020 - sync up email threads between cert/cc and pppd author
• 01/16/2020 - pppd author bug is only reachable if CHAP or SRP secret is configured
• 01/16/2020 - IOActive is skeptical about this claim. shows some evidence and asks pppd author

to look into it
• 01/16/2020 - pppd author acknowledges that the previous claim is not actually implemented.

unsolicited eap messages will get parsed and can trigger the issue
• 02/03/2020 - pppd author asks to review patch
• 02/03/2020 - IOActive reviewed patch, responds saying the fix looks good
• 02/03/2020 - got message saying CVE 'CVE-2020-8597' was assigned for this issue
• 02/03/2020 - patch to fix issue is publicly committed. same for path to ignore unsolicited eap

messages
• 02/04/2020 - got message from cert/cc, saying they're about to start communications soon with

vendors and linux distros
• 03/04/2020 - cert/cc publishes Vulnerability Note VU#782301 covering this issue

